HW 9: NUMBER THEORY

1. Prove that for no integer $n>1$ does n divide $2^{n}-1$.
2. Determine all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ satisfying

$$
f\left(x^{3}+y^{3}+z^{3}\right)=f(x)^{3}+f(y)^{3}+f(z)^{3}
$$

for all $x, y, z \in \mathbb{Z}$.
3. Find all functions $\mathrm{f}: \mathbb{N} \rightarrow \mathbb{N}$ satisfying

$$
f(n)+2 f(f(n))=3 n+5
$$

for all $n \in \mathbb{N}$.
4. Show that no positive integers x, y, z can satisfy the equation

$$
x^{2}+10 y^{2}=3 z^{2}
$$

5. Let n be an integer greater than 2. Prove that $n(n-1)^{4}+1$ is the product of two integers greater than 1 .
6. Let p be a prime number. Prove that there are infinitely many multiples of p whose last ten digits are all distinct.
